

Welcome to DART documentation!

Introduction

DART (Dynamic Animation and Robotics Toolkit) is a collaborative,
cross-platform, open-source library developed by the
Graphics Lab [http://www.cc.gatech.edu/~karenliu/Home.html] and
Humanoid Robotics Lab [http://www.golems.org/] at the
Georgia Institute of Technology [http://www.gatech.edu/], with ongoing
contributions from the
Personal Robotics Lab [http://personalrobotics.cs.washington.edu/] at the
University of Washington [http://www.washington.edu/] and the
Open Source Robotics Foundation [https://www.osrfoundation.org/]. It provides
data structures and algorithms for kinematic and dynamic applications in
robotics and computer animation. DART stands out due to its accuracy and
stability, which are achieved through the use of generalized coordinates to
represent articulated rigid body systems and the application of Featherstone’s
Articulated Body Algorithm to compute motion dynamics.

Updates

	2022-12-31: DART version 6.13.0 released.

Social Media

Stay updated with the latest news and developments about DART by following us
on Twitter [https://twitter.com/dartsim_org] and subscribing to our
YouTube channel [https://www.youtube.com/@dartyoutube3531].

Vision for the next version of DART

	Elevate the Python binding to a first-class component, ensuring full support
and equivalent functionality to the C++ APIs, rather than remaining in an
experimental stage.

	Modularize the library so that users can select specific components to use
with minimal required dependencies, rather than having to use the entire
library, including unnecessary parts.

	Utilize hardware accelerations, such as SIMD, multi-core CPUs, and GPUs,
whenever available and enabled by the user, to maximize overall performance.

	Support both single and double precision, with options to compile the library
for required scalar types or leave the template code uncompiled.

	Minimize dependencies to make the library usable without bringing in all
transitive dependencies.

	Modernize implementation and public APIs to enable users to work with more
intuitive and user-friendly APIs.

	Provide various resources, such as a quick start guide, examples, and
tutorials, to lower the initial learning curve for users.

Citation

If you use DART in an academic publication, please consider citing this
JOSS Paper [https://doi.org/10.21105/joss.00500]
[BibTeX [https://gist.github.com/jslee02/998b8809e3ae1b7aef6ef04dd2ad5e27]]

@article{Lee2018,
 doi = {10.21105/joss.00500},
 url = {https://doi.org/10.21105/joss.00500},
 year = {2018},
 month = {Feb},
 publisher = {The Open Journal},
 volume = {3},
 number = {22},
 pages = {500},
 author = {Jeongseok Lee and Michael X. Grey and Sehoon Ha and Tobias Kunz and Sumit Jain and Yuting Ye and Siddhartha S. Srinivasa and Mike Stilman and C. Karen Liu},
 title = {{DART}: Dynamic Animation and Robotics Toolkit},
 journal = {The Journal of Open Source Software}
}

Overview

DART (Dynamic Animation and Robotics Toolkit) is a collaborative, cross-platform, open-source library developed by the Graphics Lab [http://www.cc.gatech.edu/~karenliu/Home.html] and Humanoid Robotics Lab [http://www.golems.org/] at the Georgia Institute of Technology [http://www.gatech.edu/], with ongoing contributions from the Personal Robotics Lab [http://personalrobotics.cs.washington.edu/] at the University of Washington [http://www.washington.edu/] and the Open Source Robotics Foundation [https://www.osrfoundation.org/]. It provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART stands out due to its accuracy and stability, which are achieved through the use of generalized coordinates to represent articulated rigid body systems and the application of Featherstone’s Articulated Body Algorithm to compute motion dynamics.

For developers, DART offers full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices, and their derivatives, unlike many popular physics engines that treat the simulator as a black box. It also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. The frame semantics of DART allow users to define and use arbitrary reference frames (both inertial and non-inertial) to specify or request data.

DART is suitable for real-time controllers due to its lazy evaluation, which automatically updates forward kinematics and dynamics values to ensure code safety. It also allows for the extension of the API to embed user-provided classes into DART data structures. Contacts and collisions are handled using an implicit time-stepping, velocity-based linear complementarity problem (LCP) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions.

In summary, DART has applications in robotics and computer animation as it features a multibody dynamic simulator and various kinematic tools for control and motion planning.

Features

General

	Open-source C++ library licensed under the BSD license.

	Supports multiple platforms including Ubuntu, Archlinux, FreeBSD, macOS, and Windows.

	Fully integrated with Gazebo.

	Supports models in URDF and SDF formats.

	Provides default integration methods (semi-implicit Euler and RK4) and an extensible API for other numerical integration methods.

	Supports lazy evaluation and automatic updates of kinematic and dynamic quantities.

	Allows for the extension of the API to embed user-provided classes into its data structures.

	Provides comprehensive event recording in the simulation history.

	3D visualization API using OpenGL and OpenSceneGraph with ImGui support.

	Extensible API to interface with various optimization problems, such as nonlinear programming and multi-objective optimization.

Collision Detection

	Support for multiple collision detectors: FCL, Bullet, and ODE.

	Support for various collision shapes including primitive shapes, concave mesh, and probabilistic voxel grid.

	Support for minimum distance computation.

Kinematics

	Support for numerous types of Joints.

	Support for numerous primitive and arbitrary body shapes with customizable inertial and material properties.

	Support for flexible skeleton modeling, including cloning and reconfiguring skeletons or subsections of a skeleton.

	Comprehensive access to kinematic states (e.g. transformation, position, velocity, or acceleration) of arbitrary entities and coordinate frames.

	Comprehensive access to various Jacobian matrices and their derivatives.

	Flexible conversion of coordinate frames.

	Fully modular inverse kinematics framework.

	Plug-and-play hierarchical whole-body inverse kinematics solver.

	Analytic inverse kinematics interface with ikfast support.

Dynamics

	High performance for articulated dynamic systems using Lie Group representation and Featherstone hybrid algorithms.

	Exact enforcement of joints between body nodes using generalized coordinates.

	Comprehensive API for dynamic quantities and their derivatives, such as the mass matrix, Coriolis force, gravitational force, and other external and internal forces.

	Support for both rigid and soft body nodes.

	Modeling of viscoelastic joint dynamics with joint friction and hard joint limits.

	Support for various types of actuators.

	Handling of contacts and collisions using an implicit LCP to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions.

	Use of the “Island” technique to subdivide constraint handling for efficient performance.

	Support for various Cartesian constraints and extensible API for user-defined constraints.

	Multiple constraint solvers: Lemke method, Dantzig method, and PSG method.

	Support for dynamic systems with closed-loop structures.

Gallery

Built-in Examples

Atlas Simbicon

The Atlas Simbicon demo simulates Atlas [http://www.bostondynamics.com/robot_Atlas.html]
humanoid robot controlled by Simbicon [http://www.cs.ubc.ca/~van/papers/Simbicon.htm],
which is a simple biped locomotion controller. This demo is a fully 3D
simulation with articulated dynamics and rigid body collisions. This demo uses
OpenSceneGraph for 3D rendering and ImGui for 2D on-screen buttons. The source
code can be found in the examples/osg/osgAtlasSimbicon [https://github.com/dartsim/dart/tree/b680dfa4dad11eeee4a7d5d1e0d621c9861a70d0/examples/atlas_simbicon]
directory.

The controller has three control modes: ‘No Control’, ‘Short-Stride Walking’,
and ‘Normal-Stride Walking’. The Atlas robot can walk keeping its balance with
disturbances. You can apply external forces to the torso using the keyboard:

	‘A’ Key: push forward the torso of Atlas

	‘S’ Key: push backward the torso of Atlas

	‘D’ Key: push left the torso of Atlas

	‘F’ Key: push right the torso of Atlas

“Reset Atlas” button is for recovering the robot to the initial location and
initial pose, which is useful when it’s fallen or bungee-jumped out of the ground.

Gravity can be varied using the slider at the 2D GUI.

 Installation

Installation

Python

To install the Python bindings for DART using the dartpy package from PyPI,
you can use the following command:

pip install dartpy -U

The following operating systems are currently supported:

	Operating
System

	Python
3.7

	Python
3.8

	Python
3.9

	Python
3.10

	Python
3.11

	Linux x86_64

	O

	O

	O

	O

	O

	Linux arm64

	X

	X

	X

	X

	O

	macOS x86_64

	X

	O

	O

	O

	O

	macOS arm64

	X

	O

	X

	O

	O

	Windows x86_64

	X

	O

	O

	O

	O

	Windows arm64

	X

	X

	X

	X

	O

Note

This table may not be up-to-date. For the latest information on the
availability of the Python bindings for DART, please refer to the dartpy
package on PyPI: https://pypi.org/project/dartpy/. If you would like to use
dartpy on an unsupported OS or Python version, please let us know so we can
consider adding support.

C++

Ubuntu

To install DART on Ubuntu, you can use the following commands:

	Add the DART PPA to your system:

sudo apt-add-repository ppa:dartsim/ppa

	Update your package list:

sudo apt-get update

	Install the libdart6-all-dev package:

sudo apt-get install libdart7-all-dev-nightly

macOS

To install DART on macOS, you can use Homebrew:

	Install Homebrew if you haven’t already:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

	Install the dartsim formula:

brew install dartsim

Windows

To install DART on Windows, you can use vcpkg:

	Install vcpkg if you haven’t already:

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
bootstrap-vcpkg.bat

	Install the dartsim package:

vcpkg install dartsim:x64-windows

Arch Linux (experimental)

To install DART on Arch Linux using the yay package manager, you can use the
following commands:

	Update your package list:

yay -Syu

	Install the libdart package:

yay -S libdart

FreeBSD (experimental)

To install DART on FreeBSD, you can use the following commands:

	Update your package list:

pkg update

	Install the dartsim package:

pkg install dartsim

 Examples

Examples

Once you have installed dartpy using pip install -U dartpy, you can run the following “Hello World” example to simulate a 6-DOF robot using DART.

Note

In order to load the URDF, please clone dart repository and set the DART_DATA_LOCAL_PATH environment variable to where the data folder is in the cloned repository (e.g., C:/ws/dart/data/ if cloned to C:/ws/dart/)

import dartpy as dart

def main():
 world = dart.simulation.World()

 urdf_parser = dart.io.DartLoader()
 kr5 = urdf_parser.parseSkeleton("dart://sample/urdf/KR5/KR5 sixx R650.urdf")
 ground = urdf_parser.parseSkeleton("dart://sample/urdf/KR5/ground.urdf")
 world.addSkeleton(kr5)
 world.addSkeleton(ground)
 print("Robot {} is loaded".format(kr5.getName()))

 for i in range(100):
 if i % 10 == 0:
 print(
 "[{}] joint position: {}".format(
 world.getSimFrames(), kr5.getPositions()
)
)
 world.step()

if __name__ == "__main__":
 main()

When you run this script, it will perform a forward dynamic simulation of the 6-DOF robot for 100 steps. Joint angles are printed every 10 steps, producing the following output:

Robot KR5sixxR650WP_description is loaded
[0] joint position: [0. 0. 0. 0. 0. 0.]
[10] joint position: [0.00220342 0.00021945 -0.00040518 0.00011133 0.00074889 -0.00010902]
[20] joint position: [0.00841056 0.0008539 -0.0015611 0.00042308 0.00284968 -0.00040791]
[30] joint position: [0.01861372 0.00194988 -0.00350848 0.00092958 0.0062733 -0.00087254]
[40] joint position: [0.03279843 0.00358421 -0.00631463 0.00162151 0.01097006 -0.0014636]
[50] joint position: [0.05094093 0.00586373 -0.01007336 0.00248606 0.01686793 -0.00212772]
[60] joint position: [0.07300469 0.00892482 -0.01490498 0.00350698 0.02387041 -0.00279907]
[70] joint position: [0.098936 0.01293271 -0.02095646 0.00466479 0.03185446 -0.0034017]
[80] joint position: [0.12865883 0.01808055 -0.02840175 0.00593683 0.04066865 -0.00385261]
[90] joint position: [0.16206903 0.02458815 -0.03744247 0.00729732 0.05013223 -0.00406555]

You can find additional example code at https://github.com/dartsim/dart/tree/main/python/examples

 Tutorials

Tutorials

The purpose of this tutorial is to provide a quick introduction to
using DART. We designed many hands-on exercises to make the learning
effective and fun. To follow along with this tutorial, first locate
the tutorial code in the directory:
dart/tutorials [https://github.com/dartsim/dart/tree/2b59bd7b4ab7ea184026d5a19f1ad20df867012d/tutorials].
For each of the four tutorials, we provide the skeleton code as the starting
point (e.g.
tutorial_multi_pendulum [https://github.com/dartsim/dart/tree/2b59bd7b4ab7ea184026d5a19f1ad20df867012d/tutorials/tutorial_multi_pendulum])
and the final code as the answer to the tutorial (e.g.
tutorial_multi_pendulum_finished [https://github.com/dartsim/dart/tree/2b59bd7b4ab7ea184026d5a19f1ad20df867012d/tutorials/tutorial_multi_pendulum_finished]).
The examples are based on the APIs of DART 7.0.

Contents

	Biped

	Collisions

	Dominoes

	Multi Pendulum

 Biped

Biped

Overview

This tutorial demonstrates the dynamic features in DART useful for
developing controllers for bipedal or wheel-based robots. The tutorial
consists of seven Lessons covering the following topics:

	Joint limits and self-collision.

	Actuators types and management.

	APIs for Jacobian matrices and other kinematic quantities.

	APIs for dynamic quantities.

	Skeleton editing.

Please reference the source code in tutorialBiped.cpp [https://github.com/dartsim/dart/blob/release-5.1/tutorials/tutorialBiped.cpp] and tutorialBiped-Finished.cpp [https://github.com/dartsim/dart/blob/release-5.1/tutorials/tutorialBiped-Finished.cpp].

Lesson 1: Joint limits and self-collision

Let’s start by locating the main function in tutorialBiped.cpp. We first create a floor
and call loadBiped to load a bipedal figure described in SKEL
format, which is an XML format representing a robot model. A SKEL file
describes a World with one or more Skeletons in it. Here we
load in a World from biped.skel [https://github.com/dartsim/dart/blob/release-5.1/data/skel/biped.skel] and assign the bipedal figure to a
Skeleton pointer called biped.

SkeletonPtr loadBiped()
{
...
 WorldPtr world = SkelParser::readWorld(DART_DATA_LOCAL_PATH"skel/biped.skel");
 SkeletonPtr biped = world->getSkeleton("biped");
...
}

Running the skeleton code (hit the spacebar) without any modification, you should see a
human-like character collapse on the ground and fold in on
itself. Before we attempt to control the biped, let’s first make the
biped a bit more realistic by enforcing more human-like joint limits.

DART allows the user to set upper and lower bounds on each degree of
freedom in the SKEL file or using provided APIs. For example, you
should see the description of the right knee joint in biped.skel:

<joint type="revolute" name="j_shin_right">
...
 <axis>
 <xyz>0.0 0.0 1.0</xyz>
 <limit>
 <lower>-3.14</lower>
 <upper>0.0</upper>
 </limit>
 </axis>
...
</joint>

The <upper> and <lower> tags make sure that the knee can only flex but
not extend. Alternatively, you can directly specify the joint limits
in the code using
setPositionUpperLimit and setPositionLowerLimit.

In either case, the joint limits on the biped will not be activated
until you call setPositionLimited:

SkeletonPtr loadBiped()
{
...
 for(size_t i = 0; i < biped->getNumJoints(); ++i)
 biped->getJoint(i)->setLimitEnforcement(true);
...
}

Once the joint limits are set, the next task is to enforce
self-collision. By default, DART does not check self-collision within
a skeleton. You can enable self-collision checking on the biped by

SkeletonPtr loadBiped()
{
...
 biped->enableSelfCollisionCheck();
...
}

This function will enable self-collision on every pair of
body nodes. If you wish to disable self-collisions on adjacent body
nodes, call the following function

biped->disableAdjacentBodyCheck();

Running the program again, you should see that the character is still
floppy like a ragdoll, but now the joints do not bend backward and the
body nodes do not penetrate each other anymore.

Lesson 2: Proportional-derivative control

To actively control its own motion, the biped must exert internal
forces using actuators. In this Lesson, we will design one of the
simplest controllers to produce internal forces that make the biped
hold a target pose. The proportional-derivative (PD) control computes
control force by Τ = -kp (θ -
θtarget) - kd θ̇, where θ
and θ̇ are the current position and velocity of a degree of
freedom, θtarget is the target position set by the
controller, and kp and kd are the stiffness and
damping coefficients. The detailed description of a PD controller can
be found here [https://en.wikipedia.org/wiki/PID_controller].

The first task is to set the biped to a particular configuration. You
can use setPosition to set each degree of freedom individually:

void setInitialPose(SkeletonPtr biped)
{
...
 biped->setPosition(biped->getDof("j_thigh_left_z")->getIndexInSkeleton(), 0.15);
...
}

Here the degree of freedom named “j_thigh_left_z” is set to 0.15
radian. Note that each degree of freedom in a skeleton has a numerical
index which can be accessed by
getIndexInSkeleton. You
can also set the entire configuration using a vector that holds the
positions of all the degreed of freedoms using
setPositions.

We continue to set more degrees of freedoms in the lower
body to create a roughly stable standing pose.

biped->setPosition(biped->getDof("j_thigh_left_z")->getIndexInSkeleton(), 0.15);
biped->setPosition(biped->getDof("j_thigh_right_z")->getIndexInSkeleton(), 0.15);
biped->setPosition(biped->getDof("j_shin_left")->getIndexInSkeleton(), -0.4);
biped->setPosition(biped->getDof("j_shin_right")->getIndexInSkeleton(), -0.4);
biped->setPosition(biped->getDof("j_heel_left_1")->getIndexInSkeleton(), 0.25);
biped->setPosition(biped->getDof("j_heel_right_1")->getIndexInSkeleton(), 0.25);

Now the biped will start in this configuration, but will not maintain
this configuration as soon as the simulation starts. We need a
controller to make this happen. Let’s take a look at the constructor of our Controller in the
skeleton code:

Controller(const SkeletonPtr& biped)
{
...
 for(size_t i = 0; i < 6; ++i)
 {
 mKp(i, i) = 0.0;
 mKd(i, i) = 0.0;
 }

 for(size_t i = 6; i < mBiped->getNumDofs(); ++i)
 {
 mKp(i, i) = 1000;
 mKd(i, i) = 50;
 }

 setTargetPositions(mBiped->getPositions());
}

Here we arbitrarily define the stiffness and damping coefficients to
1000 and 50, except for the first six degrees of freedom. Because the
global translation and rotation of the biped are not actuated, the
first six degrees of freedom at the root do not exert any internal
force. Therefore, we set the stiffness and damping coefficients to
zero. At the end of the constructor, we set the target position of the PD
controller to the current configuration of the biped.

With these settings, we can compute the forces generated by the PD
controller and add them to the internal forces of biped using setForces:

void addPDForces()
{
 math::VectorXd q = mBiped->getPositions();
 math::VectorXd dq = mBiped->getVelocities();

 math::VectorXd p = -mKp * (q - mTargetPositions);
 math::VectorXd d = -mKd * dq;

 mForces += p + d;
 mBiped->setForces(mForces);
}

Note that the PD control force is added to the current internal force
stored in mForces instead of overriding it.

Now try to run the program and see what happens. The skeleton
disappears almost immediately as soon as you hit the space bar! This
is because our stiffness and damping coefficients are set way too
high. As soon as the biped deviates from the target position, huge
internal forces are generated to cause the numerical simulation to
blow up.

So let’s lower those coefficients a bit. It turns out that each of the
degrees of freedom needs to be individually tuned depending on many
factors, such as the inertial properties of the body nodes, the type
and properties of joints, and the current configuration of the
system. Figuring out an appropriate set of coefficients can be a
tedious process difficult to generalize across new tasks or different
skeletons. In the next Lesson, we will introduce a much more efficient
way to stabilize the PD controllers without endless tuning and
trial-and-errors.

Lesson 3: Stable PD control

SPD is a variation of PD control proposed by
Jie Tan [http://www.cc.gatech.edu/~jtan34/project/spd.html]. The
basic idea of SPD is to compute control force using the predicted
state at the next time step, instead of the current state. This Lesson
will only demonstrate the implementation of SPD using DART without
going into details of SPD derivation.

The implementation of SPD involves accessing the current dynamic
quantities in Lagrange’s equations of motion. Fortunately, these
quantities are readily available via DART API, which makes the full
implementation of SPD simple and concise:

void addSPDForces()
{
 math::VectorXd q = mBiped->getPositions();
 math::VectorXd dq = mBiped->getVelocities();

 math::MatrixXd invM = (mBiped->getMassMatrix() + mKd * mBiped->getTimeStep()).inverse();
 math::VectorXd p = -mKp * (q + dq * mBiped->getTimeStep() - mTargetPositions);
 math::VectorXd d = -mKd * dq;
 math::VectorXd qddot = invM * (-mBiped->getCoriolisAndGravityForces() + p + d + mBiped->getConstraintForces());

 mForces += p + d - mKd * qddot * mBiped->getTimeStep();
 mBiped->setForces(mForces);
}

You can get mass matrix, Coriolis force, gravitational force, and
constraint force projected onto generalized coordinates using function
calls getMassMatrix,
getCoriolisForces,
getGravityForces,
and
getConstraintForces,
respectively. Constraint forces include forces due to contacts, joint
limits, and other joint constraints set by the user (e.g. the weld
joint constraint in the multi-pendulum tutorial).

With SPD, a wide range of stiffness and damping coefficients will all
result in stable motion. In fact, you can just leave them to our
original values: 1000 and 50. By holding the target pose, now the biped
can stand on the ground in balance indefinitely. However, if you apply
an external push force on the biped (hit ‘,’ or ‘.’ key to apply a
backward or forward push), the biped loses its balance quickly. We
will demonstrate a more robust feedback controller in the next Lesson.

Lesson 4: Ankle strategy

Ankle (or hip) strategy is an effective way to maintain standing
balance. The idea is to adjust the target position of ankles according
to the deviation between the center of mass and the center of pressure
projected on the ground. A simple linear feedback rule is used to
update the target ankle position: θa = -kp
(x - p) - kd (ẋ - ṗ), where x and p indicate the
center of mass and center of pressure in the anterior-posterior
axis. kp and kd are the feedback gains defined
by the user.

To implement ankle strategy, let’s first compute the deviation between
the center of mass and an approximated center of pressure in the
anterior-posterior axis:

void addAnkleStrategyForces()
{
 math::Vector3d COM = mBiped->getCOM();
 math::Vector3d offset(0.05, 0, 0);
 math::Vector3d COP = mBiped->getBodyNode("h_heel_left")->getTransform() * offset;
 double diff = COM[0] - COP[0];
...
}

DART provides various APIs to access useful kinematic information. For
example, getCOM returns the center of mass of the skeleton and
getTransform returns transformation of the body node with
respect to any coordinate frame specified by the parameter (world
coordinate frame as default). DART APIs also come in handy when
computing the derivative term, -kd (ẋ - ṗ):

void addAnkleStrategyForces()
{
...
 math::Vector3d dCOM = mBiped->getCOMLinearVelocity();
 math::Vector3d dCOP = mBiped->getBodyNode("h_heel_left")->getLinearVelocity(offset);
 double dDiff = dCOM[0] - dCOP[0];
...
}

The linear/angular velocity/acceleration of any point in any coordinate
frame can be easily accessed in DART. The full list of the APIs for accessing
various velocities/accelerations can be found in the API Documentation [http://dartsim.github.io/dart/]. The
following table summarizes the essential APIs.

	Function Name

	Description

	getSpatialVelocity

	Return the spatial velocity of this BodyNode in the coordinates of the BodyNode.

	getLinearVelocity

	Return the linear portion of classical velocity of the BodyNode relative to some other BodyNode.

	getAngularVelocity

	Return the angular portion of classical velocity of this BodyNode relative to some other BodyNode.

	getSpatialAcceleration

	Return the spatial acceleration of this BodyNode in the coordinates of the BodyNode.

	getLinearAcceleration

	Return the linear portion of classical acceleration of the BodyNode relative to some other BodyNode.

	getAngularAcceleration

	Return the angular portion of classical acceleration of this BodyNode relative to some other BodyNode.

The remaining of the ankle strategy implementation is just the matter
of parameters tuning. We found that using different feedback rules for
falling forward and backward result in more stable controller.

Lesson 5: Skeleton editing

DART provides various functions to copy, delete, split, and merge
parts of skeletons to alleviate the pain of building simulation models from
scratch. In this Lesson, we will load a skateboard model from a SKEL
file and merge our biped with the skateboard to create a wheel-based
robot.

We first load a skateboard from skateboard.skel:

void modifyBipedWithSkateboard(SkeletonPtr biped)
{
 WorldPtr world = SkelParser::readWorld(DART_DATA_LOCAL_PATH"skel/skateboard.skel");
 SkeletonPtr skateboard = world->getSkeleton(0);
...
}

Our goal is to make the skateboard Skeleton a subtree of the biped
Skeleton connected to the left heel BodyNode via a newly created
Euler joint. To do so, you need to first create an instance of
EulerJoint::Properties for this new joint.

void modifyBipedWithSkateboard(SkeletonPtr biped)
{
...
 EulerJoint::Properties properties = EulerJoint::Properties();
 properties.mT_ChildBodyToJoint.translation() = math::Vector3d(0, 0.1, 0);
...
}

Here we increase the vertical distance between the child BodyNode and
the joint by 0.1m to give some space between the skateboard and the
left foot. Now you can merge the skateboard and the biped using this new Euler
joint by

void modifyBipedWithSkateboard(SkeletonPtr biped)
{
...
 skateboard->getRootBodyNode()->moveTo<EulerJoint>(biped->getBodyNode("h_heel_left"), properties);
}

There are many other functions you can use to edit skeletons. Here is
a table of some relevant functions for quick references.

	Function Name

	Example

	Description

	remove

	bd1->remove()

	Remove the BodyNode bd1 and its subtree from their Skeleton.

	moveTo

	bd1->moveTo(bd2)

	Move the BodyNode bd1 and its subtree under the BodyNode bd2.

	split

	auto newSkel = bd1->split(“new skeleton”)`

	Remove the BodyNode bd1 and its subtree from their current Skeleton and move them into a newly created Skeleton with “new skeleton” name.

	changeParentJointType

	bd1->changeParentJointType<BallJoint>()

	Change the Joint type of the BodyNode bd1’s parent joint to BallJoint

	copyTo

	bd1->copyTo(bd2)

	Create clones of the BodyNode bd1 and its subtree and attach the clones to the specified the BodyNode bd2.

	copyAs

	auto newSkel = bd1->copyAs(“new skeleton”)

	Create clones of the BodyNode bd1 and its subtree and create a new Skeleton with “new skeleton” name to attach them to.

Lesson 6: Actuator types

DART provides five types of actuator. Each joint can select its own
actuator type.

	Type

	Description

	FORCE

	Take joint force and return the resulting joint acceleration.

	PASSIVE

	Take nothing (joint force = 0) and return the resulting joint acceleration.

	ACCELERATION

	Take desired joint acceleration and return the joint force to achieve the acceleration.

	VELOCITY

	Take desired joint velocity and return the joint force to achieve the velocity.

	LOCKED

	Lock the joint by setting the joint velocity and acceleration to zero and return the joint force to lock the joint.

In this Lesson, we will switch the actuator type of the wheels
from the default FORCE type to VELOCITY type.

void setVelocityActuators(SkeletonPtr biped)
{
 Joint* wheel1 = biped->getJoint("joint_front_left");
 wheel1->setActuatorType(Joint::VELOCITY);
...
}

Once all four wheels are set to VELOCITY actuator type, you can
command them by directly setting the desired velocity:

void setWheelCommands()
{
...
 int index1 = mBiped->getDof("joint_front_left_2")->getIndexInSkeleton();
 mBiped->setCommand(index1, mSpeed);
...
}

Note that setCommand only exerts commanding force in the current time step. If you wish the
wheel to continue spinning at a particular speed, setCommand
needs to be called at every time step.

We also set the stiffness and damping coefficients for the wheels to zero.

void setWheelCommands()
{
 int wheelFirstIndex = mBiped->getDof("joint_front_left_1")->getIndexInSkeleton();
 for (size_t i = wheelFirstIndex; i < mBiped->getNumDofs(); ++i)
 {
 mKp(i, i) = 0.0;
 mKd(i, i) = 0.0;
 }
...
}

This is because we do not want the velocity-based actuators to
incorrectly affect the computation of SPD. If we use simple PD
control scheme, the values of these spring and damping coefficients do not
affect the dynamics of the system.

Let’s simulate what we’ve got so far. The biped now is connecting to the
skateboard through a Euler joint. Once the simulation starts, you can
use ‘a’ and ‘s’ to increase or decrease the wheel speed. However, the
biped falls on the floor immediately because the current target pose is not
balanced for one-foot stance. We need to find a better target
pose.

Lesson 7: Inverse kinematics

Instead of manually designing a target pose, this time we will solve for
a balanced pose by formulating an inverse kinematics (IK) problem and
solving it using gradient descent method. In this example, a balanced
pose is defined as a pose where the center of mass is well supported
by the ground contact and the left foot lies flat on the ground. As
such, we cast IK as an optimization problem that minimizes the
horizontal deviation between the center of mass and the center of the
left foot, as well as the vertical distance of the four corners of the
left foot from the ground:

where c and p indicate the projected center of mass and center of
pressure on the ground, and pi indicates the vertical height of one
corner of the left foot.

To compute the gradient of the above objective function, we need to evaluate
the partial derivatives of each objective term with respect to the
degrees of freedom, i.e., the computation of Jacobian matrix. DART
provides a comprensive set of APIs for accessing various types of
Jacobian. In this example, computing the gradient of the first term of
the objective function requires the Jacobian of the
center of mass of the Skeleton, as well as the Jacobian of the center
of mass of a BodyNode:

math::VectorXd solveIK(SkeletonPtr biped)
{
...
 math::Vector3d localCOM = leftHeel->getCOM(leftHeel);
 LinearJacobian jacobian = biped->getCOMLinearJacobian() - biped->getLinearJacobian(leftHeel, localCOM);
...
}

getCOMLinearJacobian returns the linear Jacobian of the
center of mass of the Skeleton, while getLinearJacobian
returns the Jacobian of a point on a BodyNode. The BodyNode and the
local coordinate of the point are specified as parameters to this
function. Here the point of interest is the center of mass of the left
foot, which local coordinates can be accessed by getCOM
with a parameter indicating the left foot being the frame of
reference. We use getLinearJacobian again to compute the
gradient of the second term of the objective function:

math::VectorXd solveIK(SkeletonPtr biped)
{
...
 math::Vector3d offset(0.0, -0.04, -0.03);
 gradient = biped->getLinearJacobian(leftHeel, offset).row(1);
...
}

The full list of Jacobian APIs can be found in the API Documentation [http://dartsim.github.io/dart/]. The
following table summarizes the essential APIs.

	Function Name

	Description

	getJacobian

	Return the generalized Jacobian targeting the origin of the BodyNode. The Jacobian is expressed in the Frame of this BodyNode.

	getLinearJacobian

	Return the linear Jacobian targeting the origin of the BodyNode. You can specify a coordinate Frame to express the Jacobian in.

	getAngularJacobian

	Return the angular Jacobian targeting the origin of the BodyNode. You can specify a coordinate Frame to express the Jacobian in.

	getJacobianSpatialDeriv

	Return the spatial time derivative of the generalized Jacobian targeting the origin of the BodyNode. The Jacobian is expressed in the BodyNode’s coordinate Frame.

	getJacobianClassicDeriv

	Return the classical time derivative of the generalized Jacobian targeting the origin of the BodyNode. The Jacobian is expressed in the World coordinate Frame.

	getLinearJacobianDeriv

	Return the linear Jacobian (classical) time derivative, in terms of any coordinate Frame.

	getAngularJacobianDeriv

	Return the angular Jacobian (classical) time derivative, in terms of any coordinate Frame.

This Lesson concludes the entire Biped tutorial. You should see a biped
standing stably on the skateboard. With moderate
acceleration/deceleration on the skateboard, the biped is able to
maintain balance and hold the one-foot stance pose.

 Collisions

Collisions

Overview

This tutorial will show you how to programmatically create different kinds of
bodies and set initial conditions for Skeletons. It will also demonstrate some
use of DART’s Frame Semantics.

The tutorial consists of five Lessons covering the following topics:

	Creating a rigid body

	Creating a soft body

	Setting initial conditions and taking advantage of Frames

	Setting joint spring and damping properties

	Creating a closed kinematic chain

Please reference the source code in tutorialCollisions.cpp [https://github.com/dartsim/dart/blob/release-5.1/tutorials/tutorialCollisions.cpp] and tutorialCollisions-Finished.cpp [https://github.com/dartsim/dart/blob/release-5.1/tutorials/tutorialCollisions-Finished.cpp].

Lesson 1: Creating a rigid body

Start by going opening the Skeleton code tutorialCollisions.cpp [https://github.com/dartsim/dart/blob/release-5.1/tutorials/tutorialCollisions.cpp].
Find the function named addRigidBody. You will notice that this is a templated
function. If you’re not familiar with templates, that’s okay; we won’t be doing
anything too complicated with them. Different Joint types in DART are managed by
a bunch of different classes, so we need to use templates if we want the same
function to work with a variety of Joint types.

Lesson 1a: Setting joint properties

The first thing we’ll want to do is set the Joint properties for our new body.
Whenever we create a BodyNode, we must also create a parent Joint for it. A
BodyNode needs a parent Joint, even if that BodyNode is the root of the Skeleton,
because we need its parent Joint to describe how it’s attached to the world. A
root BodyNode could be attached to the world by any kind of Joint. Most often,
it will be attached by either a FreeJoint (if the body should be completely
free to move with respect to the world) or a WeldJoint (if the body should be
rigidly attached to the world, unable to move at all), but any Joint type
is permissible.

Joint properties are managed in a nested class, which means it’s a class which
is defined inside of another class. For example, RevoluteJoint properties are
managed in a class called RevoluteJoint::Properties while PrismaticJoint
properties are managed in a class called PrismaticJoint::Properties. However,
both RevoluteJoint and PrismaticJoint inherit the SingleDofJoint class
so the RevoluteJoint::Properties and PrismaticJoint::Properties classes
both inherit the SingleDofJoint::Properties class. The difference is that
RevoluteJoint::Properties also inherits RevoluteJoint::UniqueProperties
whereas PrismaticJoint::Properties inherits PrismaticJoint::UniqueProperties
instead. Many DART classes contain nested Properties classes like this which
are compositions of their base class’s nested Properties class and their own
UniqueProperties class. As you’ll see later, this is useful for providing a
consistent API that works cleanly for fundamentally different types of classes.

To create a Properties class for our Joint type, we’ll want to say

typename JointType::Properties joint_properties;

We need to include the typename keywords because of how the syntax works for
templated functions. Leaving it out should make your compiler complain.

From here, we can set the Joint properties in any way we’d like. There are only
a few things we care about right now: First, the Joint’s name. Every Joint in a
Skeleton needs to have a non-empty unique name. Those are the only restrictions
that are placed on Joint names. If you try to make a Joint’s name empty, it will
be given a default name. If you try to make a Joint’s name non-unique, DART will
append a number tag to the end of the name in order to make it unique. It will
also print out a warning during run time, which can be an eyesore (because it
wants you to be aware when you are being negligent about naming things). For the
sake of simplicity, let’s just give it a name based off its child BodyNode:

joint_properties.mName = name+"_joint";

Don’t forget to uncomment the function arguments.

Next we’ll want to deal with offsetting the new BodyNode from its parent BodyNode.
We can use the following to check if there is a parent BodyNode:

if(parent)
{
 // TODO: offset the child from its parent
}

Inside the brackets, we’ll want to create the offset between bodies:

math::Isometry3d tf(math::Isometry3d::Identity());

An math::Isometry3d is the Eigen library’s version of a homogeneous
transformation matrix. Here we are initializing it to an Identity matrix to
start out. This is almost always something you should do when creating an
math::Isometry3d, because otherwise its contents will be completely arbitrary
trash.

We can easily compute the center point between the origins of the two bodies
using our default height value:

tf.translation() = math::Vector3d(0, 0, default_shape_height / 2.0);

We can then offset the parent and child BodyNodes of this Joint using this
transform:

joint_properties.mT_ParentBodyToJoint = tf;
joint_properties.mT_ChildBodyToJoint = tf.inverse();

Remember that all of that code should go inside the if(parent) condition.
We do not want to create this offset for root BodyNodes, because later on we
will rely on the assumption that the root Joint origin is lined up with the
root BodyNode origin.

Lesson 1b: Create a Joint and BodyNode pair

A single function is used to simultaneously create a new Joint and its child
BodyNode. It’s important to note that a Joint cannot be created without a
child BodyNode to accompany it, and a BodyNode cannot be created with parent
Joint to attach it to something. A parent Joint without a child BodyNode or
vice-versa would be non-physical and nonsensical, so we don’t allow it.

Use the following to create a new Joint & BodyNode, and obtain a pointer to
that new BodyNode:

BodyNode* bn = chain->createJointAndBodyNodePair<JointType>(
 parent, joint_properties, BodyNode::AspectProperties(name)).second;

There’s a lot going on in this function, so let’s break it down for a moment:

chain->createJointAndBodyNodePair<JointType>

This is a Skeleton member function that takes template arguments. The first
template argument specifies the type of Joint that you want to create. In our
case, the type of Joint we want to create is actually a template argument of
our current function, so we just pass that argument along. The second template
argument of createJointAndBodyNodePair allows us to specify the BodyNode
type that we want to create, but the default argument is a standard rigid
BodyNode, so we can leave the second argument blank.

(parent, joint_properties, BodyNode::AspectProperties(name))

Now for the function arguments: The first specifies the parent BodyNode. In the
event that you want to create a root BodyNode, you can simply pass in a nullptr
as the parent. The second argument is a JointType::Properties struct, so we
pass in the joint_properties object that we created earlier. The third argument is
a BodyNode::Properties struct, but we’re going to set the BodyNode properties
later, so we’ll just toss the name in by wrapping it up in a
BodyNode::AspectProperties object and leave the rest as default values.

Now notice the very last thing on this line of code:

.second;

The function actually returns a std::pair of pointers to the new Joint and
new BodyNode that were just created, but we only care about grabbing the
BodyNode once the function is finished, so we can append .second to the end
of the line so that we just grab the BodyNode pointer and ignore the Joint
pointer. The joint will of course still be created; we just have no need to
access it at this point.

Lesson 1c: Make a shape for the body

We’ll take advantage of the Shape::ShapeType enumeration to specify what kind of
Shape we want to produce for the body. In particular, we’ll allow the user to
specify three types of Shapes: Shape::BOX, Shape::CYLINDER, and
Shape::ELLIPSOID.

ShapePtr shape;
if(Shape::BOX == type)
{
 // TODO: Make a box
}
else if(Shape::CYLINDER == type)
{
 // TODO: Make a cylinder
}
else if(SHAPE::ELLIPSOID == type)
{
 // TODO: Make an ellipsoid
}

ShapePtr is simply a typedef for std::shared_ptr<Shape>. DART has this
typedef in order to improve space usage and readability, because this type gets
used very often.

Now we want to construct each of the Shape types within their conditional
statements. Each constructor is a bit different.

For box we pass in an math::Vector3d that contains the three dimensions of the box:

shape = std::make_shared<BoxShape>(math::Vector3d(
 default_shape_width,
 default_shape_width,
 default_shape_height));

For cylinder we pass in a radius and a height:

shape = std::make_shared<CylinderShape>(default_shape_width/2.0,
 default_shape_height);

For ellipsoid we pass in an math::Vector3d that contains the lengths of the three axes:

shape = std::make_shared<EllipsoidShape>(
 default_shape_height*math::Vector3d::Ones());

Since we actually want a sphere, all three axis lengths will be equal, so we can
create an math::Vector3d filled with ones by using math::Vector3d::Ones()
and then multiply it by the length that we actually want for the three components.

Finally, we want to add this shape as a visualization and collision shape for
the BodyNode:

auto shapeNode =
 bn->createShapeNodeWith<VisualAspect, CollisionAspect, DynamicsAspect>(shape);

We want to do this no matter which type was selected, so those two lines of code
should be after all the condition statements.

Lesson 1d: Set up the inertia properties for the body

For the simulations to be physically accurate, it’s important for the inertia
properties of the body to match up with the geometric properties of the shape.
We can create an Inertia object and set its values based on the shape’s
geometry, then give that Inertia to the BodyNode.

Inertia inertia;
double mass = default_shape_density * shape->getVolume();
inertia.setMass(mass);
inertia.setMoment(shape->computeInertia(mass));
bn->setInertia(inertia);

Lesson 1e: Set the coefficient of restitution

This is very easily done with the following function:

shapeNode->getDynamicsAspect()->setRestitutionCoeff(default_restitution);

Lesson 1f: Set the damping coefficient

In real life, joints have friction. This pulls energy out of systems over time,
and makes those systems more stable. In our simulation, we’ll ignore air
friction, but we’ll add friction in the joints between bodies in order to have
better numerical and dynamic stability:

if(parent)
{
 Joint* joint = bn->getParentJoint();
 for(size_t i=0; i < joint->getNumDofs(); ++i)
 joint->getDof(i)->setDampingCoefficient(default_damping_coefficient);
}

If this BodyNode has a parent BodyNode, then we set damping coefficients of its
Joint to a default value.

Lesson 2: Creating a soft body

Find the templated function named addSoftBody. This function will have a
role identical to the addRigidBody function from earlier.

Lesson 2a: Set the Joint properties

This portion is exactly the same as Lesson 1a. You can even copy the code
directly from there if you’d like to.

Lesson 2b: Set the properties of the soft body

Last time we set the BodyNode properties after creating it, but this time
we’ll set them beforehand.

First, let’s create a struct for the properties that are unique to SoftBodyNodes:

SoftBodyNode::UniqueProperties soft_properties;

Later we will combine this with a standard BodyNode::Properties struct, but
for now let’s fill it in. Up above we defined an enumeration for a couple
different SoftBodyNode types. There is no official DART-native enumeration
for this, we created our own to use for this function. We’ll want to fill in
the SoftBodyNode::UniqueProperties struct based off of this enumeration:

if(SOFT_BOX == type)
{
 // TODO: make a soft box
}
else if(SOFT_CYLINDER == type)
{
 // TODO: make a soft cylinder
}
else if(SOFT_ELLIPSOID == type)
{
 // TODO: make a soft ellipsoid
}

Each of these types has a static function in the SoftBodyNodeHelper class
that will set up your UniqueProperties for you. The arguments for each of
the functions are a bit complicated, so here is how to call it for each type:

For the SOFT_BOX:

// Make a wide and short box
double width = default_shape_height, height = 2*default_shape_width;
math::Vector3d dims(width, width, height);

double mass = 2*dims[0]*dims[1] + 2*dims[0]*dims[2] + 2*dims[1]*dims[2];
mass *= default_shape_density * default_skin_thickness;
soft_properties = SoftBodyNodeHelper::makeBoxProperties(
 dims, math::Isometry3d::Identity(), math::Vector3i(4,4,4), mass);

For the SOFT_CYLINDER:

// Make a wide and short cylinder
double radius = default_shape_height/2.0, height = 2*default_shape_width;

// Mass of center
double mass = default_shape_density * height * 2*M_PI*radius
 * default_skin_thickness;
// Mass of top and bottom
mass += 2 * default_shape_density * M_PI*pow(radius,2)
 * default_skin_thickness;
soft_properties = SoftBodyNodeHelper::makeCylinderProperties(
 radius, height, 8, 3, 2, mass);

And for the SOFT_ELLIPSOID:

double radius = default_shape_height/2.0;
math::Vector3d dims = 2*radius*math::Vector3d::Ones();
double mass = default_shape_density * 4.0*M_PI*pow(radius, 2)
 * default_skin_thickness;
soft_properties = SoftBodyNodeHelper::makeEllipsoidProperties(
 dims, 6, 6, mass);

Feel free to play around with the different parameters, like number of slices
and number of stacks. However, be aware that some of those parameters have a
minimum value, usually of 2 or 3. During runtime, you should be warned if you
try to create one with a parameter that’s too small.

Lastly, we’ll want to fill in the softness coefficients:

soft_properties.mKv = default_vertex_stiffness;
soft_properties.mKe = default_edge_stiffness;
soft_properties.mDampCoeff = default_soft_damping;

Lesson 2c: Create the Joint and Soft Body pair

This step is very similar to Lesson 1b, except now we’ll want to specify
that we’re creating a soft BodyNode. First, let’s create a full
SoftBodyNode::Properties:

SoftBodyNode::Properties body_properties(BodyNode::AspectProperties(name),
 soft_properties);

This will combine the UniqueProperties of the SoftBodyNode with the
standard properties of a BodyNode. Now we can pass the whole thing into
the creation function:

SoftBodyNode* bn = chain->createJointAndBodyNodePair<JointType, SoftBodyNode>(
 parent, joint_properties, body_properties).second;

Notice that this time it will return a SoftBodyNode pointer rather than a
normal BodyNode pointer. This is one of the advantages of templates!

Lesson 2d: Zero out the BodyNode inertia

A SoftBodyNode has two sources of inertia: the underlying inertia of the
standard BodyNode class, and the point mass inertias of its soft skin. In our
case, we only want the point mass inertias, so we should zero out the standard
BodyNode inertia. However, zeroing out inertia values can be very dangerous,
because it can easily result in singularities. So instead of completely zeroing
them out, we will just make them small enough that they don’t impact the
simulation:

Inertia inertia;
inertia.setMoment(1e-8*math::Matrix3d::Identity());
inertia.setMass(1e-8);
bn->setInertia(inertia);

Lesson 2e: Make the shape transparent

To help us visually distinguish between the soft and rigid portions of a body,
we can make the soft part of the shape transparent. Upon creation, a SoftBodyNode
will have exactly one visualization shape: the soft shape visualizer. We can
grab that shape and reduce the value of its alpha channel:

auto shape = bn->getShapeNodesWith<VisualAspect>()[0];
math::Vector4d color = shape->getVisualAspect()->getRGBA();
color[3] = 0.4;
shape->getVisualAspect()->setRGBA(color);

Lesson 2f: Give a hard bone to the SoftBodyNode

SoftBodyNodes are intended to be used as soft skins that are attached to rigid
bones. We can create a rigid shape, place it in the SoftBodyNode, and give some
inertia to the SoftBodyNode’s base BodyNode class, to act as the inertia of the
bone.

Find the function createSoftBody(). Underneath the call to addSoftBody,
we can create a box shape that matches the dimensions of the soft box, but scaled
down:

double width = default_shape_height, height = 2*default_shape_width;
math::Vector3d dims(width, width, height);
dims *= 0.6;
std::shared_ptr<BoxShape> box = std::make_shared<BoxShape>(dims);

And then we can add that shape to the visualization and collision shapes of the
SoftBodyNode, just like normal:

bn->createShapeNodeWith<VisualAspect, CollisionAspect, DynamicsAspect>(box);

And we’ll want to make sure that we set the inertia of the underlying BodyNode,
or else the behavior will not be realistic:

Inertia inertia;
inertia.setMass(default_shape_density * box->getVolume());
inertia.setMoment(box->computeInertia(inertia.getMass()));
bn->setInertia(inertia);

Note that the inertia of the inherited BodyNode is independent of the inertia
of the SoftBodyNode’s skin.

Lesson 2g: Add a rigid body attached by a WeldJoint

To make a more interesting hybrid shape, we can attach a protruding rigid body
to a SoftBodyNode using a WeldJoint. Find the createHybridBody() function
and see where we call the addSoftBody function. Just below this, we’ll
create a new rigid body with a WeldJoint attachment:

bn = hybrid->createJointAndBodyNodePair<WeldJoint>(bn).second;
bn->setName("rigid box");

Now we can give the new rigid BodyNode a regular box shape:

double box_shape_height = default_shape_height;
std::shared_ptr<BoxShape> box = std::make_shared<BoxShape>(
 box_shape_height*math::Vector3d::Ones());

bn->createShapeNodeWith<VisualAspect, CollisionAspect, DynamicsAspect>(box);

To make the box protrude, we’ll shift it away from the center of its parent:

math::Isometry3d tf(math::Isometry3d::Identity());
tf.translation() = math::Vector3d(box_shape_height/2.0, 0, 0);
bn->getParentJoint()->setTransformFromParentBodyNode(tf);

And be sure to set its inertia, or else the simulation will not be realistic:

Inertia inertia;
inertia.setMass(default_shape_density * box->getVolume());
inertia.setMoment(box->computeInertia(inertia.getMass()));
bn->setInertia(inertia);

Lesson 3: Setting initial conditions and taking advantage of Frames

Find the addObject function in the MyWorld class. This function will
be called whenever the user requests for an object to be added to the world.
In this function, we want to set up the initial conditions for the object so
that it gets thrown at the wall. We also want to make sure that it’s not in
collision with anything at the time that it’s added, because that would result
in problems for the simulation.

Lesson 3a: Set the starting position for the object

We want to position the object in a reasonable place for us to throw it at the
wall. We also want to have the ability to randomize its location along the y-axis.

First, let’s create a zero vector for the position:

math::Vector6d positions(math::Vector6d::Zero());

You’ll notice that this is an math::Vector6d rather than the usual
math::Vector3d. This vector has six components because the root BodyNode
has 6 degrees of freedom: three for orientation and three for translation.
Because we follow Roy Featherstone’s Spatial Vector convention, the first
three components are for orientation using a logmap (also known as angle-axis)
and the last three components are for translation.

First, if randomness is turned on, we’ll set the y-translation to a randomized
value:

if(mRandomize)
 positions[4] = default_spawn_range * mDistribution(mMT);

mDistribution(mMT) will generate a random value in the range [-1, 1]
inclusive because of how we initialized the classes in the constructor of
MyWindow.

Then we always set the height to the default value:

positions[5] = default_start_height;

Finally, we use this vector to set the positions of the root Joint:

object->getJoint(0)->setPositions(positions);

We trust that the root Joint is a FreeJoint with 6 degrees of freedom because
of how we constructed all the objects that are going to be thrown at the wall:
They were all given a FreeJoint between the world and the root BodyNode.

Lesson 3b: Set the object’s name

Every object in the world is required to have a non-empty unique name. Just like
Joint names in a Skeleton, if we pass a Skeleton into a world with a non-unique
name, the world will print out a complaint to us and then rename it. So avoid the
ugly printout, we’ll make sure the new object has a unique name ahead of time:

object->setName(object->getName()+std::to_string(mSkelCount++));

Lesson 3c: Add the object to the world without collisions

Before we add the Skeleton to the world, we want to make sure that it
isn’t actually placed inside of something accidentally. If an object in a
simulation starts off inside of another object, it can result in extremely
non-physical simulations, perhaps even breaking the simulation entirely.
We can access the world’s collision detector directly to check make sure the
new object is collision-free:

auto collisionEngine
 = mWorld->getConstraintSolver()->getCollisionDetector();

Now we shouldn’t be surprised if the other objects are in collision with each
other, so we’ll need to check whether our new object overlaps with any existing objects.
First, we use the collision engine to create a group which contains our object. Then,
we get a group containing the existing objects in the world and use it to check for
collisions.

auto newGroup = collisionEngine->createCollisionGroup(object.get());
auto collisionGroup = mWorld->getConstraintSolver()->getCollisionGroup();

dart::collision::CollisionOption option;
dart::collision::CollisionResult result;
bool collision = collisionGroup->collide(newGroup.get(), option, &result);

If the new skeleton doesn’t overlap an existing object, we can add it to the
world without any complaints:

if (!collision)
{
 mWorld->addSkeleton(object);
}
else
{
 std::cout << "The new object spawned in a collision. "
 << "It will not be added to the world." << std::endl;
 return false;
}

Of course we should also print out a message so that user understands why we
didn’t throw a new object.

Lesson 3d: Creating reference frames

DART has a unique feature that we call Frame Semantics. The Frame Semantics of
DART allow you to create reference frames and use them to get and set data
relative to arbitrary frames. There are two crucial Frame types currently used
in DART: BodyNodes and SimpleFrames.

The BodyNode class does not allow you to explicitly set its transform, velocity,
or acceleration properties, because those are all strictly functions of the
degrees of freedom that the BodyNode depends on. Because of this, the BodyNode
is not a very convenient class if you want to create an arbitrary frame of
reference. Instead, DART offers the SimpleFrame class which gives you the
freedom of arbitarily attaching it to any parent Frame and setting its transform,
velocity, and acceleration to whatever you’d like. This makes SimpleFrame useful
for specifying arbitrary reference frames.

We’re going to set up a couple SimpleFrames and use them to easily specify the
velocity properties that we want the Skeleton to have. First, we’ll place a
SimpleFrame at the Skeleton’s center of mass:

math::Isometry3d centerTf(math::Isometry3d::Identity());
centerTf.translation() = object->getCOM();
SimpleFrame center(Frame::World(), "center", centerTf);

Calling object->getCOM() will tell us the center of mass location with
respect to the World Frame. We use that to set the translation of the
SimpleFrame’s relative transform so that the origin of the SimpleFrame will be
located at the object’s center of mass.

Now we’ll set what we want the object’s angular and linear speeds to be:

double angle = default_launch_angle;
double speed = default_start_v;
double angular_speed = default_start_w;
if(mRandomize)
{
 angle = (mDistribution(mMT) + 1.0)/2.0 *
 (maximum_launch_angle - minimum_launch_angle) + minimum_launch_angle;

 speed = (mDistribution(mMT) + 1.0)/2.0 *
 (maximum_start_v - minimum_start_v) + minimum_start_v;

 angular_speed = mDistribution(mMT) * maximum_start_w;
}

We just use the default values unless randomization is turned on.

Now we’ll convert those speeds into directional velocities:

math::Vector3d v = speed * math::Vector3d(cos(angle), 0.0, sin(angle));
math::Vector3d w = angular_speed * math::Vector3d::UnitY();

And now we’ll use those vectors to set the velocity properties of the SimpleFrame:

center.setClassicDerivatives(v, w);

The SimpleFrame::setClassicDerivatives() allows you to set the classic linear
and angular velocities and accelerations of a SimpleFrame with respect to its
parent Frame, which in this case is the World Frame. In DART, classic velocity and
acceleration vectors are explicitly differentiated from spatial velocity and
acceleration vectors. If you are unfamiliar with the term “spatial vector”, then
you’ll most likely want to work in terms of classic velocity and acceleration.

Now we want to create a new SimpleFrame that will be a child of the previous one:

SimpleFrame ref(¢er, "root_reference");

And we want the origin of this new Frame to line up with the root BodyNode of
our object:

ref.setRelativeTransform(object->getBodyNode(0)->getTransform(¢er));

Now we’ll use this reference frame to set the velocity of the root BodyNode.
By setting the velocity of the root BodyNode equal to the velocity of this
reference frame, we will ensure that the overall velocity of Skeleton’s center
of mass is equal to the velocity of the center Frame from earlier.

object->getJoint(0)->setVelocities(ref.getSpatialVelocity());

Note that the FreeJoint uses spatial velocity and spatial acceleration for its
degrees of freedom.

Now we’re ready to toss around objects!

Lesson 4: Setting joint spring and damping properties

Find the setupRing function. This is where we’ll setup a chain of BodyNodes
so that it behaves more like a closed ring.

Lesson 4a: Set the spring and damping coefficients

We’ll want to set the stiffness and damping coefficients of only the
DegreesOfFreedom that are between two consecutive BodyNodes. The first
six degrees of freedom are between the root BodyNode and the World, so we don’t
want to change the stiffness of them, or else the object will hover unnaturally
in the air. But all the rest of the degrees of freedom should be set:

for(size_t i=6; i < ring->getNumDofs(); ++i)
{
 DegreeOfFreedom* dof = ring->getDof(i);
 dof->setSpringStiffness(ring_spring_stiffness);
 dof->setDampingCoefficient(ring_damping_coefficient);
}

Lesson 4b: Set the rest positions of the joints

We want to make sure that the ring’s rest position works well for the structure
it has. Using basic geometry, we know we can compute the exterior angle on each
edge of a polygon like so:

size_t numEdges = ring->getNumBodyNodes();
double angle = 2 * dart::math::pi() / numEdges;

Now it’s important to remember that the joints we have between the BodyNodes are
BallJoints, which use logmaps (a.k.a. angle-axis) to represent their positions.
The BallJoint class provides a convenience function for converting rotations
into a position vector for a BallJoint. A similar function also exists for
EulerJoint and FreeJoint.

for(size_t i=1; i < ring->getNumJoints(); ++i)
{
 Joint* joint = ring->getJoint(i);
 math::AngleAxisd rotation(angle, math::Vector3d(0, 1, 0));
 math::Vector3d restPos = BallJoint::convertToPositions(
 math::Matrix3d(rotation));

 // TODO: Set the rest position
}

Now we can set the rest positions component-wise:

 for(size_t j=0; j<3; ++j)
 joint->setRestPosition(j, restPos[j]);

Lesson 4c: Set the Joints to be in their rest positions

Finally, we should set the ring so that all the degrees of freedom (past the
root BodyNode) start out in their rest positions:

for(size_t i=6; i < ring->getNumDofs(); ++i)
{
 DegreeOfFreedom* dof = ring->getDof(i);
 dof->setPosition(dof->getRestPosition());
}

Lesson 5: Create a closed kinematic chain

Find the addRing function in MyWindow. In here, we’ll want to create a
dynamic constraint that attaches the first and last BodyNodes of the chain
together by a BallJoint-style constraint.

First we’ll grab the BodyNodes that we care about:

BodyNode* head = ring->getBodyNode(0);
BodyNode* tail = ring->getBodyNode(ring->getNumBodyNodes()-1);

Now we want to compute the offset where the BallJoint constraint should be located:

math::Vector3d offset = math::Vector3d(0, 0, default_shape_height / 2.0);
offset = tail->getWorldTransform() * offset;

The offset will be located half the default height up from the center of the
tail BodyNode.

Now we have everything we need to construct the constraint:

auto constraint = std::make_shared<dart::dynamics::BallJointConstraint>(
 head, tail, offset);

In order for the constraint to work, we’ll need to add it to the world’s
constraint solver:

mWorld->getConstraintSolver()->addConstraint(constraint);

And in order to properly clean up the constraint when removing BodyNodes, we’ll
want to add it to our list of constraints:

mJointConstraints.push_back(constraint);

And that’s it! You’re ready to run the full tutorialCollisions application!

When running the application, keep in mind that the dynamics of collisions are
finnicky, so you may see some unstable and even completely non-physical behavior.
If the application freezes, you may need to force quit out of it.

 Dominoes

Dominoes

Overview

This tutorial will demonstrate some of the more advanced features of DART’s
dynamics API which allow you to write robust controllers that work for real
dynamic systems, such as robotic manipulators. We will show you how to:

	Clone Skeletons

	Load a URDF

	Write a stable PD controller w/ gravity and coriolis compensation

	Write an operational space controller

Please reference the source code in tutorialDominoes.cpp [https://github.com/dartsim/dart/blob/release-5.1/tutorials/tutorialDominoes.cpp] and tutorialDominoes-Finished.cpp [https://github.com/dartsim/dart/blob/release-5.1/tutorials/tutorialDominoes-Finished.cpp].

Lesson 1: Cloning Skeletons

There are often times where you might want to create an exact replica of an
existing Skeleton. DART offers cloning functionality that allows you to do this
very easily.

Lesson 1a: Create a new domino

Creating a new domino is straightforward. Find the function attemptToCreateDomino
in the MyWindow class. The class has a member called mFirstDomino which
is the original domino created when the program starts up. To make a new one,
we can just clone it:

SkeletonPtr newDomino = mFirstDomino->clone();

But keep in mind that every Skeleton that gets added to a world requires its own
unique name. Creating a clone will keep the original name, so we should we give
the new copy its own name:

newDomino->setName("domino #" + std::to_string(mDominoes.size() + 1));

So the easy part is finished, but now we need to get the domino to the correct
position. First, let’s grab the last domino that was placed in the environment:

const SkeletonPtr& lastDomino = mDominoes.size() > 0 ?
 mDominoes.back() : mFirstDomino;

Now we should compute what we want its position to be. The MyWindow class
keeps a member called mTotalAngle which tracks how much the line of dominoes
has turned so far. We’ll use that to figure out what translational offset the
new domino should have from the last domino:

math::Vector3d dx = default_distance * math::Vector3d(
 cos(mTotalAngle), sin(mTotalAngle), 0.0);

And now we can compute the total position of the new domino. First, we’ll copy
the positions of the last domino:

math::Vector6d x = lastDomino->getPositions();

And then we’ll add the translational offset to it:

x.tail<3>() += dx;

Remember that the domino’s root joint is a FreeJoint which has six degrees of
freedom: the first three are for orientation and last three are for translation.

Finally, we should add on the change in angle for the new domino:

x[2] = mTotalAngle + angle;

Be sure to uncomment the angle argument of the function.

Now we can use x to set the positions of the domino:

newDomino->setPositions(x);

The root FreeJoint is the only joint in the domino’s Skeleton, so we can just
use the Skeleton::setPositions function to set it.

Now we’ll add the Skeleton to the world:

mWorld->addSkeleton(newDomino);

Lesson 1b: Make sure no dominoes are in collision

Similar to Lesson 3 of the Collisions tutorial, we’ll want to make sure
that the newly inserted Skeleton is not starting out in collision with anything,
because this could make for a very ugly (perhaps even broken) simulation.

First, we’ll tell the world to compute collisions:

dart::collision::CollisionDetector* detector =
 mWorld->getConstraintSolver()->getCollisionDetector();
detector->detectCollision(true, true);

Now we’ll look through and see if any dominoes are in collision with anything
besides the floor. We ignore collisions with the floor because, mathemetically
speaking, if they are in contact with the floor then they register as being in
collision. But we want the dominoes to be in contact with the floor, so this is
okay.

bool dominoCollision = false;
size_t collisionCount = detector->getNumContacts();
for(size_t i = 0; i < collisionCount; ++i)
{
 // If neither of the colliding BodyNodes belongs to the floor, then we
 // know the new domino is in contact with something it shouldn't be
 const dart::collision::Contact& contact = detector->getContact(i);
 if(contact.bodyNode1.lock()->getSkeleton() != mFloor
 && contact.bodyNode2.lock()->getSkeleton() != mFloor)
 {
 dominoCollision = true;
 break;
 }
}

The only object that could possibly have collided with something else is the
new domino, because we don’t allow the application to create new things except
for the dominoes. So if this registered as true, then we should take the new
domino out of the world:

if(dominoCollision)
{
 // Remove the new domino, because it is penetrating an existing one
 mWorld->removeSkeleton(newDomino);
}

Otherwise, if the new domino is in an okay position, we should add it to the
history:

else
{
 // Record the latest domino addition
 mAngles.push_back(angle);
 mDominoes.push_back(newDomino);
 mTotalAngle += angle;
}

Lesson 1c: Delete the last domino added

Ordinarily, removing a Skeleton from a scene is just a matter of calling the
World::removeSkeleton function, but we have a little bit of bookkeeping to
take care of for our particular application. First, we should check whether
there are any dominoes to actually remove:

if(mDominoes.size() > 0)
{
 // TODO: Remove Skeleton
}

Then we should grab the last domino in the history, remove it from the history,
and then take it out of the world:

SkeletonPtr lastDomino = mDominoes.back();
mDominoes.pop_back();
mWorld->removeSkeleton(lastDomino);

The SkeletonPtr class is really a std::shared_ptr<Skeleton> so we don’t
need to worry about ever calling delete on it. Instead, its resources will
be freed when lastDomino goes out of scope.

We should also make sure to do the bookkeepping for the angles:

mTotalAngle -= mAngles.back();
mAngles.pop_back();

Now we can add and remove dominoes from the scene. Feel free to give it a try.

Lesson 1d: Apply a force to the first domino

But just setting up dominoes isn’t much fun without being able to knock them
down. We can quickly and easily knock down the dominoes by magically applying
a force to the first one. In the timeStepping function of MyWindow there
is a label for Lesson 1d. This spot will get visited whenever the user
presses ‘f’, so we’ll apply an external force to the first domino here:

math::Vector3d force = default_push_force * math::Vector3d::UnitX();
math::Vector3d location =
 default_domino_height / 2.0 * math::Vector3d::UnitZ();
mFirstDomino->getBodyNode(0)->addExtForce(force, location);

Lesson 2: Loading and controlling a robotic manipulator

Striking something with a magical force is convenient, but not very believable.
Instead, let’s load a robotic manipulator and have it push over the first domino.

Lesson 2a: Load a URDF file

Our manipulator is going to be loaded from a URDF file. URDF files are loaded
by the dart::io::DartLoader class (pending upcoming changes to DART’s
loading system). First, create a loader:

dart::io::DartLoader loader;

Note that many URDF files use ROS’s package: scheme to specify the locations
of the resources that need to be loaded. We won’t be using this in our example,
but in general you should use the function DartLoader::addPackageDirectory
to specify the locations of these packages, because DART does not have the same
package resolving abilities of ROS.

Now we’ll have loader parse the file into a Skeleton:

SkeletonPtr manipulator =
 loader.parseSkeleton(DART_DATA_LOCAL_PATH"urdf/KR5/KR5 sixx R650.urdf");

And we should give the Skeleton a convenient name:

manipulator->setName("manipulator");

Now we’ll want to initialize the location and configuration of the manipulator.
Experimentation has demonstrated that the following setup is good for our purposes:

// Position its base in a reasonable way
math::Isometry3d tf = math::Isometry3d::Identity();
tf.translation() = math::Vector3d(-0.65, 0.0, 0.0);
manipulator->getJoint(0)->setTransformFromParentBodyNode(tf);

// Get it into a useful configuration
manipulator->getDof(1)->setPosition(140.0 * M_PI / 180.0);
manipulator->getDof(2)->setPosition(-140.0 * M_PI / 180.0);

And lastly, be sure to return the Skeleton that we loaded rather than the dummy
Skeleton that was originally there:

return manipulator;

Feel free to load up the application to see the manipulator in the scene,
although all it will be able to do is collapse pitifully onto the floor.

Lesson 2b: Grab the desired joint angles

To make the manipulator actually useful, we’ll want to have the Controller
control its joint forces. For it to do that, the Controller class will need
to be informed of what we want the manipulator’s joint angles to be. This is
easily done in the constructor of the Controller class:

mQDesired = mManipulator->getPositions();

The function Skeleton::getPositions will get all the generalized coordinate
positions of all the joints in the Skeleton, stacked in a single vector. These
Skeleton API functions are useful when commanding or controlling an entire
Skeleton with a single mathematical expression.

Lesson 2c: Write a stable PD controller for the manipulator

Now that we know what configuration we want the manipulator to hold, we can
write a PD controller that keeps them in place. Find the function setPDForces
in the Controller class.

First, we’ll grab the current positions and velocities:

math::VectorXd q = mManipulator->getPositions();
math::VectorXd dq = mManipulator->getVelocities();

Additionally, we’ll integrate the position forward by one timestep:

q += dq * mManipulator->getTimeStep();

This is not necessary for writing a regular PD controller, but instead this is
to write a “stable PD” controller which has some better numerical stability
properties than an ordinary discrete PD controller. You can try running with and
without this line to see what effect it has on the stability.

Now we’ll compute our joint position error:

math::VectorXd q_err = mQDesired - q;

And our joint velocity error, assuming our desired joint velocity is zero:

math::VectorXd dq_err = -dq;

Now we can grab our mass matrix, which we will use to scale our force terms:

const math::MatrixXd& M = mManipulator->getMassMatrix();

And then combine all this into a PD controller that computes forces to minimize
our error:

mForces = M * (mKpPD * q_err + mKdPD * dq_err);

Now we’re ready to set these forces on the manipulator:

mManipulator->setForces(mForces);

Feel free to give this PD controller a try to see how effective it is.

Lesson 2d: Compensate for gravity and Coriolis forces

One of the key features of DART is the ability to easily compute the gravity and
Coriolis forces, allowing you to write much higher quality controllers than you
would be able to otherwise. This is easily done like so:

const math::VectorXd& Cg = mManipulator->getCoriolisAndGravityForces();

And now we can update our control law by just slapping this term onto the end
of the equation:

mForces = M * (mKpPD * q_err + mKdPD * dq_err) + Cg;

Give this new PD controller a try to see how its performance compares to the
one without compensation

Lesson 3: Writing an operational space controller

While PD controllers are simply and handy, operational space controllers can be
much more elegant and useful for performing tasks. Operational space controllers
allow us to unify geometric tasks (like getting the end effector to a particular
spot) and dynamics tasks (like applying a certain force with the end effector)
all while remaining stable and smooth.

Lesson 3a: Set up the information needed for an OS controller

Unlike PD controllers, an operational space controller needs more information
than just desired joint angles.

First, we’ll grab the last BodyNode on the manipulator and treat it as an end
effector:

mEndEffector = mManipulator->getBodyNode(mManipulator->getNumBodyNodes() - 1);

But we don’t want to use the origin of the BodyNode frame as the origin of our
Operational Space controller; instead we want to use a slight offset, to get to
the tool area of the last BodyNode:

mOffset = default_endeffector_offset * math::Vector3d::UnitX();

Also, our target will be the spot on top of the first domino, so we’ll create a
reference frame and place it there. First, create the SimpleFrame:

mTarget = std::make_shared<SimpleFrame>(Frame::World(), "target");

Then compute the transform needed to get from the center of the domino to the
top of the domino:

math::Isometry3d target_offset(math::Isometry3d::Identity());
target_offset.translation() =
 default_domino_height / 2.0 * math::Vector3d::UnitZ();

And then we should rotate the target’s coordinate frame to make sure that lines
up with the end effector’s reference frame, otherwise the manipulator might try
to push on the domino from a very strange angle:

target_offset.linear() =
 mEndEffector->getTransform(domino->getBodyNode(0)).linear();

Now we’ll set the target so that it has a transform of target_offset with
respect to the frame of the domino:

mTarget->setTransform(target_offset, domino->getBodyNode(0));

And this gives us all the information we need to write an Operational Space
controller.

Lesson 3b: Computing forces for OS Controller

Find the function setOperationalSpaceForces(). This is where we’ll compute
the forces for our operational space controller.

One of the key ingredients in an operational space controller is the mass matrix.
We can get this easily, just like we did for the PD controller:

const math::MatrixXd& M = mManipulator->getMassMatrix();

Next we’ll want the Jacobian of the tool offset in the end effector. We can get
it easily with this function:

Jacobian J = mEndEffector->getWorldJacobian(mOffset);

But operational space controllers typically use the Moore-Penrose pseudoinverse
of the Jacobian rather than the Jacobian itself. There are many ways to compute
the pseudoinverse of the Jacobian, but a simple way is like this:

math::MatrixXd pinv_J = J.transpose() * (J * J.transpose()
 + 0.0025 * math::Matrix6d::Identity()).inverse();

Note that this pseudoinverse is also damped so that it behaves better around
singularities. This is method for computing the pseudoinverse is not very
efficient in terms of the number of mathematical operations it performs, but
it is plenty fast for our application. Consider using methods based on Singular
Value Decomposition if you need to compute the pseudoinverse as fast as possible.

Next we’ll want the time derivative of the Jacobian, as well as its pseudoinverse:

// Compute the Jacobian time derivative
Jacobian dJ = mEndEffector->getJacobianClassicDeriv(mOffset);

// Comptue the pseudo-inverse of the Jacobian time derivative
math::MatrixXd pinv_dJ = dJ.transpose() * (dJ * dJ.transpose()
 + 0.0025 * math::Matrix6d::Identity()).inverse();

Notice that here we’re compute the classic derivative, which means the
derivative of the Jacobian with respect to time in classical coordinates rather
than spatial coordinates. If you use spatial vector arithmetic, then you’ll want
to use BodyNode::getJacobianSpatialDeriv instead.

Now we can compute the linear components of error:

math::Vector6d e;
e.tail<3>() = mTarget->getWorldTransform().translation()
 - mEndEffector->getWorldTransform() * mOffset;

And then the angular components of error:

math::AngleAxisd aa(mTarget->getTransform(mEndEffector).linear());
e.head<3>() = aa.angle() * aa.axis();

Then the time derivative of error, assuming our desired velocity is zero:

math::Vector6d de = -mEndEffector->getSpatialVelocity(
 mOffset, mTarget.get(), Frame::World());

Like with the PD controller, we can mix in terms to compensate for gravity and
Coriolis forces:

const math::VectorXd& Cg = mManipulator->getCoriolisAndGravityForces();

The gains for the operational space controller need to be in matrix form, but
we’re storing the gains as scalars, so we’ll need to conver them:

math::Matrix6d Kp = mKpOS * math::Matrix6d::Identity();

size_t dofs = mManipulator->getNumDofs();
math::MatrixXd Kd = mKdOS * math::MatrixXd::Identity(dofs, dofs);

And we’ll need to compute the joint forces needed to achieve our desired end
effector force. This is easily done using the Jacobian transpose:

math::Vector6d fDesired = math::Vector6d::Zero();
fDesired[3] = default_push_force;
math::VectorXd f = J.transpose() * fDesired;

And now we can mix everything together into the single control law:

math::VectorXd dq = mManipulator->getVelocities();
mForces = M * (pinv_J * Kp * de + pinv_dJ * Kp * e)
 - Kd * dq + Kd * pinv_J * Kp * e + Cg + f;

Then don’t forget to pass the forces into the manipulator:

mManipulator->setForces(mForces);

Now you’re ready to try out the full dominoes app!

 Multi Pendulum

Multi Pendulum

Overview

This tutorial will demonstrate some basic interaction with DART’s dynamics
API during simulation. This will show you how to:

	Create a basic program to simulate a dynamic system

	Change the colors of shapes

	Add/remove shapes from visualization

	Apply internal forces in the joints

	Apply external forces to the bodies

	Alter the implicit spring and damping properties of joints

	Add/remove dynamic constraints

Please reference the source code in tutorialMultiPendulum.cpp [https://github.com/dartsim/dart/blob/release-5.1/tutorials/tutorialMultiPendulum.cpp] and tutorialMultiPendulum-Finished.cpp [https://github.com/dartsim/dart/blob/release-5.1/tutorials/tutorialMultiPendulum-Finished.cpp].

Lesson 0: Simulate a passive multi-pendulum

This is a warmup lesson that demonstrates how to set up a simulation
program in DART. The example we will use throughout this tutorial is a
pendulum with five rigid bodies swinging under gravity. DART allows
the user to build various articulated rigid/soft body systems from
scratch. It also loads models in URDF, SDF, and SKEL formats as
demonstrated in the later tutorials.

In DART, an articulated dynamics model is represented by a
Skeleton. In the main function, we first create an empty
skeleton named pendulum.

SkeletonPtr pendulum = Skeleton::create("pendulum");

A Skeleton is a structure that consists of BodyNodes (bodies) which are
connected by Joints. Every Joint has a child BodyNode, and every BodyNode
has a parent Joint. Even the root BodyNode has a Joint that attaches it to the
World. In the function makeRootBody, we create a pair of a
BallJoint and a BodyNode, and attach this pair to the currently
empty pendulum skeleton.

BodyNodePtr bn = pendulum->createJointAndBodyNodePair<BallJoint>(
 nullptr, properties, BodyNode::AspectProperties(name)).second;

Note that the first parameters is a nullptr, which indicates that
this new BodyNode is the root of the pendulum. If we wish to append
the new BodyNode to an existing BodyNode in the pendulum,
we can do so by passing the pointer of the existing BodyNode as
the first parameter. In fact, this is how we add more BodyNodes to
the pendulum in the function addBody:

BodyNodePtr bn = pendulum->createJointAndBodyNodePair<RevoluteJoint>(
 parent, properties, BodyNode::AspectProperties(name)).second;

The simplest way to set up a simulation program in DART is to use
SimWindow class. A SimWindow owns an instance of World and
simulates all the Skeletons in the World. In this example, we create a World with the
pendulum skeleton in it, and assign the World to an instance of
MyWindow, a subclass derived from SimWindow.

WorldPtr world(new World);
world->addSkeleton(pendulum);
MyWindow window(world);

Every single time step, the MyWindow::timeStepping function will be called
and the state of the World will be simulated. The user can override
the default timeStepping function to customize the simulation
routine. For example, one can incorporate sensors, actuators, or user
interaction in the forward simulation.

Lesson 1: Change shapes and applying forces

We have a pendulum with five bodies, and we want to be able to apply forces to
them during simulation. Additionally, we want to visualize these forces so we
can more easily interpret what is happening in the simulation. For this reason,
we’ll discuss visualizing and forces at the same time.

Lesson 1a: Reset everything to default appearance

At each step, we’ll want to make sure that everything starts out with its default
appearance. The default is for everything to be blue and there not to be any
arrow attached to any body.

Find the function named timeStepping in the MyWindow class. The top of
this function is where we will want to reset everything to the default appearance.

Each BodyNode contains visualization Shapes that will be rendered during
simulation. In our case, each BodyNode has two shapes:

	One shape to visualize the parent joint

	One shape to visualize the body

The default appearance for everything is to be colored blue, so we’ll want to
iterate through these two Shapes in each BodyNode, setting their colors to blue.

for(size_t i = 0; i < mPendulum->getNumBodyNodes(); ++i)
{
 BodyNode* bn = mPendulum->getBodyNode(i);
 auto visualShapeNodes = bn->getShapeNodesWith<VisualAspect>();
 for(std::size_t j = 0; j < 2; ++j)
 {
 visualShapeNodes[j]->getVisualAspect()->setColor(dart::Color::Blue());
 }

 // TODO: Remove any arrows
}

Additionally, there is the possibility that some BodyNodes will have an arrow
shape attached if the user had been applying an external body force to it. By
default, this arrow should not be attached, so in the outer for-loop, we should
check for arrows and remove them:

if(visualShapeNodes.size() == 3)
{
 visualShapeNodes[2]->remove();
}

Now everything will be reset to the default appearance.

Lesson 1b: Apply joint torques based on user input

The MyWindow class in this tutorial has a variable called mForceCountDown
which is a std::vector<int> whose entries get set to a value of
default_countdown each time the user presses a number key. If an entry in
mForceCountDown is greater than zero, then that implies that the user wants
a force to be applied for that entry.

There are two ways that forces can be applied:

	As an internal joint force

	As an external body force

First we’ll consider applying a Joint force. Inside the for-loop that goes
through each DegreeOfFreedom using getNumDofs(), there is an
if-statement for mForceCountDown. In that if-statement, we’ll grab the
relevant DegreeOfFreedom and set its generalized (joint) force:

DegreeOfFreedom* dof = mPendulum->getDof(i);
dof->setForce(mPositiveSign? default_torque : -default_torque);

The mPositiveSign boolean gets toggled when the user presses the minus sign
‘-’ key. We use this boolean to decide whether the applied force should be
positive or negative.

Now we’ll want to visualize the fact that a Joint force is being applied. We’ll
do this by highlighting the joint with the color red. First we’ll grab the Shape
that corresponds to this Joint:

BodyNode* bn = dof->getChildBodyNode();
auto shapeNodes = bn->getShapeNodesWith<VisualAspect>();

Because of the way the pendulum bodies were constructed, we trust that the
zeroth indexed visualization shape will be the shape that depicts the joint.
So now we will color it red:

shapeNodes[0]->getVisualAspect()->setColor(dart::Color::Red());

Lesson 1c: Apply body forces based on user input

If mBodyForce is true, we’ll want to apply an external force to the body instead
of an internal force in the joint. First, inside the for-loop that iterates
through each BodyNode using getNumBodyNodes(), there is an if-statement
for mForceCountDown. In that if-statement, we’ll grab the relevant BodyNode:

BodyNode* bn = mPendulum->getBodyNode(i);

Now we’ll create an math::Vector3d that describes the force and another one
that describes the location for that force. An math::Vector3d is the Eigen
C++ library’s version of a three-dimensional mathematical vector. Note that the
d at the end of the name stands for double, not for “dimension”. An
math::Vector3f would be a three-dimensional vector of floats, and an
math::Vector3i would be a three-dimensional vector of integers.

math::Vector3d force = default_force * math::Vector3d::UnitX();
math::Vector3d location(-default_width / 2.0, 0.0, default_height / 2.0);

The force will have a magnitude of default_force and it will point in the
positive x-direction. The location of the force will be in the center of the
negative x side of the body, as if a finger on the negative side is pushing the
body in the positive direction. However, we need to account for sign changes:

if(!mPositiveSign)
{
 force = -force;
 location[0] = -location[0];
}

That will flip the signs whenever the user is requesting a negative force.

Now we can add the external force:

bn->addExtForce(force, location, true, true);

The two true booleans at the end are indicating to DART that both the force
and the location vectors are being expressed with respect to the body frame.

Now we’ll want to visualize the force being applied to the body. First, we’ll
grab the Shape for the body and color it red:

auto shapeNodes = bn->getShapeNodesWith<VisualAspect>();
shapeNodes[1]->getVisualAspect()->setColor(dart::Color::Red());

Last time we grabbed the 0-index visualization shape, because we trusted that
it was the shape that represented the parent Joint. This time we’re grabbing
the 1-index visualization shape, because we trust that it is the shape for the
body.

Now we’ll want to add an arrow to the visualization shapes of the body to
represent the applied force. The MyWindow class already provides the arrow
shape; we just need to add it:

bn->createShapeNodeWith<VisualAspect>(mArrow);

Lesson 2: Set spring and damping properties for joints

DART allows Joints to have implicit spring and damping properties. By default,
these properties are zeroed out, so a joint will only exhibit the forces that
are given to it by the Joint::setForces function. However, you can give a
non-zero spring coefficient to a joint so that it behaves according to Hooke’s
Law, and you can give a non-zero damping coefficient to a joint which will
result in linear damping. These forces are computed using implicit methods in
order to improve numerical stability.

Lesson 2a: Set joint spring rest position

First let’s see how to get and set the rest positions.

Find the function named changeRestPosition in the MyWindow class. This
function will be called whenever the user presses the ‘q’ or ‘a’ button. We want
those buttons to curl and uncurl the rest positions for the pendulum. To start,
we’ll go through all the generalized coordinates and change their rest positions
by delta:

for(size_t i = 0; i < mPendulum->getNumDofs(); ++i)
{
 DegreeOfFreedom* dof = mPendulum->getDof(i);
 double q0 = dof->getRestPosition() + delta;

 dof->setRestPosition(q0);
}

However, it’s important to note that the system can become somewhat unstable if
we allow it to curl up too much, so let’s put a limit on the magnitude of the
rest angle. Right before dof->setRestPosition(q0); we can put:

if(std::abs(q0) > 90.0 * M_PI / 180.0)
 q0 = (q0 > 0)? (90.0 * M_PI / 180.0) : -(90.0 * M_PI / 180.0);

And there’s one last thing to consider: the first joint of the pendulum is a
BallJoint. BallJoints have three degrees of freedom, which means if we alter
the rest positions of all of the pendulum’s degrees of freedom, then the
pendulum will end up curling out of the x-z plane. You can allow this to happen
if you want, or you can prevent it from happening by zeroing out the rest
positions of the BallJoint’s other two degrees of freedom:

mPendulum->getDof(0)->setRestPosition(0.0);
mPendulum->getDof(2)->setRestPosition(0.0);

Lesson 2b: Set joint spring stiffness

Changing the rest position does not accomplish anything without having any
spring stiffness. We can change the spring stiffness as follows:

for(size_t i = 0; i < mPendulum->getNumDofs(); ++i)
{
 DegreeOfFreedom* dof = mPendulum->getDof(i);
 double stiffness = dof->getSpringStiffness() + delta;
 dof->setSpringStiffness(stiffness);
}

However, it’s important to realize that if the spring stiffness were ever to
become negative, we would get some very nasty explosive behavior. It’s also a
bad idea to just trust the user to avoid decrementing it into being negative.
So before the line dof->setSpringStiffness(stiffness); you’ll want to put:

if(stiffness < 0.0)
 stiffness = 0.0;

Lesson 2c: Set joint damping

Joint damping can be thought of as friction inside the joint actuator. It
applies a resistive force to the joint which is proportional to the generalized
velocities of the joint. This draws energy out of the system and generally
results in more stable behavior.

The API for getting and setting the damping is just like the API for stiffness:

for(size_t i = 0; i < mPendulum->getNumDofs(); ++i)
{
 DegreeOfFreedom* dof = mPendulum->getDof(i);
 double damping = dof->getDampingCoefficient() + delta;
 if(damping < 0.0)
 damping = 0.0;
 dof->setDampingCoefficient(damping);
}

Again, we want to make sure that the damping coefficient is never negative. In
fact, a negative damping coefficient would be far more harmful than a negative
stiffness coefficient.

Lesson 3: Add and remove dynamic constraints

Dynamic constraints in DART allow you to attach two BodyNodes together according
to a selection of a few different Joint-style constraints. This allows you to
create closed loop constraints, which is not possible using standard Joints.
You can also create a dynamic constraint that attaches a BodyNode to the World
instead of to another BodyNode.

In our case, we want to attach the last BodyNode to the World with a BallJoint
style constraint whenever the function addConstraint() gets called. First,
let’s grab the last BodyNode in the pendulum:

BodyNode* tip = mPendulum->getBodyNode(mPendulum->getNumBodyNodes() - 1);

Now we’ll want to compute the location that the constraint should have. We want
to connect the very end of the tip to the world, so the location would be:

math::Vector3d location =
 tip->getTransform() * math::Vector3d(0.0, 0.0, default_height);

Now we can create the BallJointConstraint:

mBallConstraint =
 std::make_shared<dart::dynamics::BallJointConstraint>(tip, location);

And then add it to the world:

mWorld->getConstraintSolver()->addConstraint(mBallConstraint);

Now we also want to be able to remove this constraint. In the function
removeConstraint(), we can put the following code:

mWorld->getConstraintSolver()->removeConstraint(mBallConstraint);
mBallConstraint = nullptr;

Setting mBallConstraint to a nullptr will allow its smart pointer to delete it.

Now you are ready to run the demo!

 Build

Build

Building DART

This guide describes how to build DART, a C++ library for robotics and motion
planning, using CMake. DART also has Python bindings, called dartpy, which will
be covered in a separate section.

Supported Environments

DART is supported on the following operating systems and compilers:

	Operating System

	Compiler

	Ubuntu 22.04 or later

	GCC 11.2 or later

	Windows 2022 or later

	Visual Studio 2022

	macOS 13 or later

	Clang 13 or later

Prerequisites

Before you can build DART, you’ll need to install the required and optional
dependencies. The required dependencies are the minimum set of dependencies
needed to build DART, while the optional dependencies enable additional
features in DART.

The steps for installing dependencies may vary depending on your operating
system and package manager. Below, we provide instructions for installing the
required and optional dependencies on Ubuntu, macOS, and Windows, as well as
some experimental guidance for other platforms.

Note

Please note that the dependencies and installation steps are subject to
change, so we encourage you to report any issues you encounter and
contribute to keeping the instructions up-to-date for the community. By
working together, we can help ensure that the DART documentation is accurate
and helpful for everyone who uses it.

Ubuntu

The dependencies for Ubuntu can be installed using the apt package
manager. The following command will install the required dependencies:

$ sudo apt install \
 build-essential cmake pkg-config git libassimp-dev \
 libeigen3-dev libfcl-dev libfmt-dev

The following command will install the optional dependencies:

$ sudo apt install \
 coinor-libipopt-dev freeglut3-dev libxi-dev libxmu-dev libbullet-dev \
 libtinyxml2-dev liburdfdom-dev liburdfdom-headers-dev \
 libopenscenegraph-dev libnlopt-cxx-dev liboctomap-dev libode-dev \
 libspdlog-dev libyaml-cpp-dev ocl-icd-opencl-dev opencl-headers \
 opencl-clhpp-headers

macOS

The dependencies for macOS can be installed using the brew package
manager. The following command will install the required dependencies:

$ brew install assimp cmake eigen fmt fcl

The following command will install the optional dependencies:

$ brew install bullet freeglut ipopt nlopt octomap ode \
 open-scene-graph --HEAD \
 spdlog tinyxml2 urdfdom yaml-cpp

Windows

The dependencies for Windows can be installed using the vcpkg package
manager. The following command will install the required dependencies:

$ vcpkg install --triplet x64-windows assimp eigen3 fcl fmt spdlog

The following command will install the optional dependencies:

$ vcpkg install --triplet x64-windows \
 assimp eigen3 fcl fmt spdlog bullet3 freeglut glfw3 nlopt ode \
 opencl opengl osg pagmo2 pybind11 tinyxml2 urdfdom yaml-cpp

Arch Linux (experimental)

The dependencies for Arch Linux can be installed using the yay package
manager. The following command will install the required dependencies:

$ yay -S assimp cmake eigen fcl fmt

The following command will install the optional dependencies:

$ yay -S \
 bullet coin-or-ipopt freeglut nlopt octomap ode opencl-clhpp \
 opencl-headers opencl-icd-loader openscenegraph pagmo spdlog tinyxml2 \
 urdfdom pybind11

FreeBSD (experimental)

TODO

Dependency Info

Here’s a summary of the dependencies required to build DART (WIP):

	Dependency

	Required

	Type

	Min. Version

	Notes

	CMake

	Yes

	Build

	3.22.1

	

	Assimp

	Yes

	Runtime

	5.2.2

	

	Eigen

	Yes

	Runtime

	3.4.0

	

Clone the DART Repository

To get started with building DART, you’ll need to clone the DART repository.
Here’s how to do it:

	Clone the DART repository by running the following command in your terminal:

$ git clone https://github.com/dartsim/dart.git

	(Optional) If you want to build a specific version of DART, you can checkout
a specific branch, tag, or commit.

$ git checkout -b <branch_or_tag_or_commit>

Note

Please note that the DART repository is actively maintained, so there may be
changes and updates to the repository over time. To get the latest
information, we recommend referring to the DART GitHub repository.

Build Configuration

DART uses CMake as its build system. CMake is a powerful tool that generates
build files for a variety of build systems, including Makefiles, Visual Studio
projects, and Xcode projects. For more information about available generators,
we recommend referring to the
CMake documentation [https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html].

To configure the build, you’ll need to create a build directory and run CMake
from that directory. Here’s how to do it:

	Create a build directory by running the following command in your terminal:

$ mkdir build

	Change into the build directory by running the following command:

$ cd build

	Run CMake from the build directory by running the following command:

$ cmake ..

If you want to configure the build, you can pass additional options to CMake.
For example, you can specify the build type by passing the
-DCMAKE_BUILD_TYPE option. DART provides a number of CMake options that
allow you to customize the build process. Here are some of the most important
options:

	Option

	Default Value

	Description

	CMAKE_BUILD_TYPE

	Release

	Specifies the build type.

	DART_ENABLE_SIMD

	ON

	Enables use of SIMD instructions.

	TODO

	
	

Note

This list of options may not be exhaustive or up-to-date. Please refer to
the main CMakeLists.txt file in the DART repository to confirm the list of
available options. If you find any discrepancies or errors, please consider
submitting a pull request to update this document.

Here are some example commands that you can use to configure the build on
different platforms with different generators:

$ cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release
$ cmake .. -G "Visual Studio 15 2017" -A x64 -DCMAKE_BUILD_TYPE=Release
$ cmake .. -G "Xcode" -DCMAKE_BUILD_TYPE=Release

Building DART from Command Line

Whether or not you configured the build for IDEs, you can still build DART from
the command line using CMake’s unified build commands.

To build DART from the command line, you’ll need to run the build command from
the build directory. Here’s how to do it:

	Change into the build directory by running the following command:

$ cd build

	Run the build command by running the following command:

$ cmake --build . [--target <target> [, <target2>, ...]] [-j<num_core>]

DART provides a number of CMake targets that you can use to build different
parts of the project. Here are some of the most important targets:

	ALL: Builds all the targets in the project, including building tests,
examples, tutorials, and running tests.

	all: Builds core targets without tests, examples, and tutorials.

	tests: Builds all the tests.

	test: Runs tests (need to build tests first).

	tests_and_run: Builds and runs tests.

	examples: Builds all the examples.

	tutorials: Builds all the tutorials.

	benchmarks: Builds all the benchmarks.

	view_docs: Builds the documentation and opens it in a web browser.

	install: Installs the project.

	dartpy: Builds the Python bindings (it’s encouraged to build using pip
instead).

	pytest: Runs Python tests (building tests if necessary).

	coverage: Runs tests and generates a coverage report.

	coverage_html: Runs tests and generates an HTML coverage report.

	coverage_view: Runs tests, generates an HTML coverage report, and opens
it in a web browser.

Note

Please note that this list of targets may not be exhaustive or up-to-date.
To confirm the full list of available targets, we recommend referring to the
main CMakeLists.txt file in the DART repository. If you find any
discrepancies or errors, we encourage you to submit a pull request to
update this document and help keep the documentation up-to-date for the
community.

Building DART from IDEs

If you configured the build for IDEs, you can build DART from the IDEs. This
section doesn’t cover how to build DART from IDEs. Please refer to the IDEs
documentation for more information. However, it’s always to welcome to submit a
pull request to update this document with instructions for your favorite IDE!

Building dartpy

In general, building dartpy from source is not necessary. The easiest way to
install dartpy is to use pip:

$ pip install dartpy -U

TODO

 Contributing to DART

Contributing to DART

DART is a collaborative project, and we welcome contributions from anyone who
is interested in helping make the project better. Whether you’re interested in
fixing bugs, adding new features, improving documentation, or something else
entirely, we appreciate your contributions.

Getting Help

If you’re looking to contribute to DART but need help getting started, there
are many resources available to you. Here are some places you can turn to for
help:

	DART documentation

	Issue tracker on GitHub

	Feature requests on GitHub

	Community showcases on GitHub

Of course, you are welcome to reach out to us directly if you need further
assistance. We are always happy to help!

Credits

DART was initially created by C. Karen Liu [https://tml.stanford.edu/people/karen-liu] and Mike Stilman [http://www.golems.org/] in 2011 at
Georgia Tech, and has since evolved with the contributions of various
institutions and individuals. We would like to extend our thanks and
appreciation to the following institutions and individuals who have contributed
to DART:

	Humanoid Lab, Georgia Tech Research Corporation

	Personal Robotics Lab, Carnegie Mellon University

	Graphics Lab, Georgia Tech Research Corporation

	Personal Robotics Lab, University of Washington

	Open Source Robotics Foundation

	The Movement Lab, Stanford University

and:

	C. Karen Liu [https://tml.stanford.edu/people/karen-liu]: project creator, multibody dynamics, constraint resolution,
tutorials

	Mike Stilman [http://www.golems.org/]: project creator

	Siddhartha S. Srinivasa [https://goodrobot.ai/]: project advisor

	Jeongseok Lee [https://github.com/jslee02]: project director, multibody dynamics, constraint resolution, collision detection, tutorials

	Michael X. Grey [https://github.com/mxgrey]: project director, extensive API improvements, inverse kinematics, gui::osg, tutorials

	Tobias Kunz [https://github.com/tobiaskunz]: former project director, motion planner

	Sumit Jain [http://www.cc.gatech.edu/graphics/projects/Sumit/homepage/]: multibody dynamics

	Yuting Ye [https://github.com/yutingye]: multibody dynamics, GUI

	Michael Koval [https://github.com/mkoval]: uri, resource retriever, bug fixes

	Ana C. Huamán Quispe [https://github.com/ana-GT]: urdf parser

	Chen Tang [https://github.com/chentang]: collision detection

	Matthew Dutton [https://github.com/mdutton3]: build and bug fixes

	Eric Huang [https://github.com/ehuang3]: build and bug fixes

	Pushkar Kolhe [https://github.com/pushkar]: early DART build system design

	Saul Reynolds-Haertle [https://github.com/saulrh]: examples, bug fixes

	Arash Rouhani [https://github.com/Tarrasch]: build fixes

	Kristin Siu [https://github.com/kasiu]: integrators, bug fixes

	Steven Peters [https://github.com/scpeters]: build improvements and fixes

	Can Erdogan [https://github.com/cerdogan]: planning, examples

	Jie Tan [https://github.com/jietan]: lcp solver, renderer

	Yunfei Bai [https://github.com/YunfeiBai]: build and bug fixes

	Konstantinos Chatzilygeroudis [https://github.com/costashatz]: mimic joint, OSG shadows, shape deep copy, build and bug fixes

	Sehoon Ha [https://github.com/sehoonha]: early DART data structure design, pydart

	Donny Ward [https://github.com/donnyward]: build fix

	Andrew Price [https://github.com/a-price]: build fix

	Eric Tobis [https://github.com/tobis]: build fix

	Jonathan Martin [https://github.com/nybblr]: build fix

and many others have contributed bug fixes, documentation, and other
improvements to DART, which can be found in the DART GitHub repository [https://github.com/dartsim/dart/graphs/contributors].

Note

If you have contributed to DART and your name is missing from the list
above, or if your contributions are not accurately reflected, or any issue
is found, please let us know by opening an issue on GitHub or contacting us
directly. We apologize for any oversights and will make every effort to
update the list in a timely manner. Thank you for your contributions to
DART!

 Code Style Guide

Code Style Guide

This section describes the code style used in DART project.

C++ Style Guide

Macro Definitions

In DART, we use macros to define compile-time constants and control code flow.
All macros in our codebase are prefixed with DART_ to distinguish them from
other identifiers. Macros that control optional dependencies and features
follow a consistent naming convention:

	DART_HAS_<optional_dep>: A boolean value that is set to true when an
optional dependency is detected in the system.

	DART_ENABLE_<optional_feature>: A boolean value that is set to true if
the optional feature should be enabled when the requirements are met.

	DART_ENABLED_<optional_feature>: A boolean value that is set to true if
the optional feature is enabled.

We use all-caps for all macro names to ensure consistency and to visually
distinguish macros from other types of variables.

Python Style Guide

Naming Conventions

This project uses different naming conventions for the C++ code and the Python
bindings. In the C++ code, function names are in camelCase and variables and
member variables use snake_case, whereas in the Python bindings, both function
names and variables use snake_case.

Here are the naming conventions used in the Python bindings:

	Function names are in snake_case, with words separated by underscores (e.g.
calculate_average).

	Class names are in CamelCase, with the first letter of each word in uppercase
(e.g. MyClass).

	Variables and member variables are in snake_case, with words separated by
underscores (e.g. my_variable).

	Constants are in ALL_CAPS, with words separated by underscores (e.g.
MY_CONSTANT).

	Namespaces are represented by modules, and are in lowercase, with words
separated by underscores (e.g. my_module.my_namespace).

For example, the identity member function is called isIdentity in C++:

auto so3 = SO3();
bool is_identity = so3.isIdentity();

while it is called is_identity in Python:

so3 = SO3()
is_identity = so3.is_identity()

Motivations for Different Naming Conventions

The reason for using different naming conventions in the C++ code and the
Python bindings is to follow the conventions that are most commonly used in
each language. The camelCase convention is more common for function names in
the C++ community, while the snake_case convention is more common for function
names in the Python community.

By using the standard naming conventions in each language, we can make the code
more readable and easier to understand for developers who are familiar with
each language. Consistency within each language is important, but it’s also
crucial to document the conventions clearly so that other developers can
understand how to use the code and what the naming conventions mean in each
context. Additionally, following the naming conventions of each language can
help with integration with other Python modules or projects.

CMake Style Guide

TODO

 Migration Guide

Migration Guide

From DART 6 to DART 7

TODO

 License

License

DART is licensed under the 2-Clause BSD License. See the
LICENSE [https://github.com/dartsim/dart/blob/main/LICENSE] file for details.

 Who Uses DART?

Who Uses DART?

Software

DART serves as the b